Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes.

نویسندگان

  • Parvinder Kaur
  • Michael Aschner
  • Tore Syversen
چکیده

Methyl mercury (MeHg) is highly neurotoxic and may lead to numerous neurodegenerative disorders. In this study, we investigated the role of glutathione (GSH) and reactive oxygen species (ROS) in MeHg-induced neurotoxicity, using primary cell cultures of cerebellar neurons and astrocytes. To evaluate the effect of GSH on MeHg-induced cytotoxicity, ROS and GSH were measured using the fluorescent indicators chloro methyl derivative of di-chloro di-hydro fluorescein diacetate (CMH(2)DCFDA) and monochlorobimane (MCB). Cell-associated MeHg was measured with (14)C-radiolabeled MeHg. Mitochondrial dehydrogenase activity was detected by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. MTT timeline study was also performed to evaluate the effects of both the concentration and duration of MeHg exposure. The intracellular GSH content was modified by pretreatment with N-acetyl cysteine (NAC) or di-ethyl maleate (DEM) for 12 h. Treatment with 5 microM MeHg for 30 min led to significant (p<0.05) increase in ROS and reduction (p<0.001) in GSH content. Depletion of intracellular GSH by DEM further increased the generation of MeHg-induced ROS in both cell cultures. Conversely, NAC supplementation increased intracellular GSH and provided protection against MeHg-induced oxidative stress in both cell cultures. MTT studies also confirmed the efficacy of NAC supplementation in attenuating MeHg-induced cytotoxicity. The cell-associated MeHg was significantly (p<0.02) increased after DEM treatment. In summary, depletion of GSH increases MeHg accumulation and enhances MeHg-induced oxidative stress, and conversely, supplementation with GSH precursor protects against MeHg exposure in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

l-Theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes

l-Theanine (γ-glutamylethylamide), a component of green tea, is considered to have regulatory and neuroprotective roles in the brain. The present study was designed to determine the effect of l-theanine on excess dopamine-induced neurotoxicity in both cell culture and animal experiments. The primary cultured mesencephalic neurons or co-cultures of mesencephalic neurons and striatal astrocytes w...

متن کامل

Effects of methylmercury on primary brain cells in mono- and co-culture.

We report on the uptake of MeHg in astrocytes and neurons, as well as specific indicators of neurotoxicity. Cerebellar granule neurons and astrocytes separately and in co-culture were cultured in the presence of MeHg and changes in 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT)-reduction, lactate dehydrogenase (LDH) leakage, and cellular content of glutathione and amino ac...

متن کامل

Effects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture

Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...

متن کامل

Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity.

Although the accumulation of the neurotoxic peptide beta amyloid (betaA) in the CNS is a hallmark of Alzheimer's disease, the mechanism of betaA neurotoxicity remains controversial. In cultures of mixed neurons and astrocytes, we found that both the full-length peptide betaA (1-42) and the neurotoxic fragment (25-35) caused sporadic cytoplasmic calcium [intracellular calcium ([Ca2+]c)] signals ...

متن کامل

Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures

Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurotoxicology

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2006